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Abstract—The integration of multisensory information plays a
crucial role in autonomous robotics. In this work, we investigate
how robust multimodal representations can naturally develop in
a self-organized manner from co-occurring multisensory inputs.
We propose a hierarchical learning architecture with growing
self-organizing neural networks for learning human actions from
audiovisual inputs. Associative links between unimodal represen-
tations are incrementally learned by a semi-supervised algorithm
with bidirectional connectivity that takes into account inherent
spatiotemporal dynamics of the input. Experiments on a dataset
of 10 full-body actions show that our architecture is able to
learn action-word mappings without the need of segmenting
training samples for ground-truth labelling. Instead, multimodal
representations of actions are obtained using the co-activation of
action features from video sequences and labels from automatic
speech recognition. Promising experimental results encourage the
extension of our architecture in several directions.

Keywords—Human action recognition, multimodal integration,
self-organizing networks.

I. INTRODUCTION

The ability to integrate information from different modali-
ties for an efficient interaction with the environment is a funda-
mental feature of the brain. As humans, our daily perceptual
experience is modulated by an array of sensors that convey
different types of modalities such as vision, sound, touch,
and movement [1]. Similarly, the integration of modalities
conveyed by multiple sensors has been a paramount ingredient
of autonomous robots. In this context, multisensory inputs
must be represented and integrated in an appropriate way such
that it results in a reliable cognitive experience aimed to trigger
adequate behavioral responses. Multimodal cognitive represen-
tations have been shown to improve robustness in the context
of action recognition and action-driven perception, learning
by imitation, socially-aware agents, and natural human-robot
interaction (HRI) [2].

An extensive number of computational models has been
proposed that aimed to integrate audiovisual input (e.g. [3][4]).
These approaches used unsupervised learning for generalizing
visual properties of the environment (e.g. objects) and linking
these representations with linguistic labels. However, action
verbs do not label actions in the same way that nouns label
objects [5]. While nouns generally refer to objects that can
be perceived as distinct units, action words refer instead to
spatiotemporal relations within events that may be performed
in many different ways. In fact, action classification has been
shown to be particularly challenging since it involves the

processing of a huge amount of visual information to learn
inherent spatiotemporal dependencies in the data. To tackle
this issue, learning-based mechanisms have been typically used
for generalizing a set of labelled training action samples and
then predicting the labels of unseen samples (e.g. [15][16]).
However, most of the well-established methods learn actions
with a batch learning scheme, i.e. assuming that all the training
samples are available at the training phase. An additional com-
mon assumption is that training samples, generally presented
as a sequence of frames from a video, are well segmented so
that ground-truth labels can be univocally assigned. Therefore,
it is usually the case that raw data collected by sensors must
undergo an intensive pre-processing pipeline before training
a model. Such pre-processing stages are mainly performed
manually, thereby hindering the automatic, continuous learning
of actions from live video streams. Intuitively, this is not the
case in nature.

Words for actions and events appear to be among children’s
earliest vocabulary [6]. A central question in the field of
developmental learning has been how children first attach
verbs to their referents. During their development, children
have at their disposal a wide range of perceptual, social, and
linguistic cues that they can use to attach a novel label to a
novel referent [7]. Referential ambiguity of verbs could then
be solved by children assuming that words map onto the action
with most perceptual saliency in their environment. Recent
experiments have shown that human infants are able to learn
action-label mappings using cross-situational statistics, thus
in the presence of piece-wise available ground-truth action
labels [8]. Furthermore, action labels can be progressively
learned and improved from social and linguistic cues so that
novel words can be attached to existing visual representations.
This hypothesis is supported by many neurophysiological
studies evidencing strong links between the areas in the brain
governing visual and language processing, and suggesting high
levels of functional interaction of these areas during action
learning and recognition [9].

In this work, we investigate how associative links between
unimodal representations can naturally emerge from the co-
occurrence of audiovisual stimuli. We show that it is possible
to progressively learn congruent multimodal representations
of human actions with neural self-organization using a spe-
cial type of hierarchical connectivity. For this purpose, we
extended our recently proposed neural architecture for the
self-organizing integration of action cues [16] with an as-
sociative learning layer where action-word mappings emerge
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Fig. 1. Diagram of our learning architecture with GWR self-organizing networks and the number of frames (and seconds) required for hierarchical processing
- Layers 1-3: parallel spatiotemporal clustering of visual features and self-organizing pose-motion integration (STS-1). Layer 4: associative learning for linking
visual representations in STS-2 to the action words layer (AWL) obtained with automatic speech recognition (ASR).

from co-occurring audiovisual inputs using Hebbian-like learn-
ing [10]. We implement experience-dependent plasticity with
the use of an incremental self-organizing network that em-
ploys neurobiologically-motivated habituation for stable learn-
ing [11]. The proposed architecture is novel in two main
aspects: First, our learning mechanism does not require manual
segmentation of training samples. Instead, spatiotemporal gen-
eralizations of actions are incrementally obtained and mapped
to symbolic labels using the co-activation of audiovisual stim-
uli. This allows us to train the model in an online fashion with
a semi-supervised learning scheme. Second, we propose a type
of bidirectional inter-layer connectivity that takes into account
the spatiotemporal dynamics of sequences so that symbolic
labels are linked to temporally-ordered representations in the
visual domain.

In Section II, we describe our hierarchical architecture with
incremental self-organizing networks and hierarchical connec-
tivity for multimodal integration. In Section III, we present
our conducted experiments and compare our results with other
approaches on a dataset of 10 actions using pose-motion cues
as visual features and labels obtained from automatic speech
recognition. In Section IV, we discuss on-going research efforts
for the extension of our model in several directions.

II. PROPOSED METHOD

Our learning architecture consists of 4 hierarchically ar-
ranged layers and a symbolic layer of action words (Fig. 1).
Layers 1 and 2 consist of a two-stream hierarchy for the
processing of pose and motion features. One pathway pro-
cesses body pose features while the other processes motion
flow. The subsequent integration of pose-motion cues is carried
out in Layer 4 (or STS-1) to provide movement dynamics in
the joint feature space. The motivation underlying hierarchical
learning is to obtain progressively specialized neurons coding
spatiotemporal dependencies of the input, consistent with the
assumption that the recognition of actions must be selective
for temporal order. This is achieved by using trajectories of
neuron activations from a network for the training of a higher-
level network. A detailed description of Layers 1, 2, and 3 is
provided by Parisi et al. [16].

From a neurobiological perspective, a large number of
studies has shown that the superior temporal sulcus (STS)
in the mammalian brain is the basis of an action-encoding
network with neurons that are not only driven by the per-
ception of dynamic human bodies, but also by audiovisual
integration [13]. Therefore, the STS area is thought to be
an associative learning device for linking different unimodal
representations, accounting for the mapping of naturally oc-
curring, highly correlated features such as shape, motion, and
characteristic sound [14]. In our proposed architecture, we
implement an associative learning network in Layer 4 (or
STS-2) where action-word mappings are progressively learned
from co-occurring audiovisual inputs using a self-organizing
connectivity scheme.

A. Self-Organizing Hierarchical Learning

Our model consists of hierarchically-arranged Growing
When Required (GWR) networks [11] that obtain progres-
sively generalized representations of sensory inputs and learn
inherent spatiotemporal dependencies. The GWR network is
composed of a set of neurons with their associated weight
vectors linked by a set of edges. The activity of a neuron is
computed as a function of the distance between the input and
its weight vector. During the training, the network dynamically
changes its topological structure to better match the input space
following competitive Hebbian learning [10].

Different from other incremental models of self-
organization, GWR-based learning takes into account the num-
ber of times that a neuron has fired so that neurons that have
fired frequently are trained less. The network implements a
habituation counter η(t) ∈ [0, 1] to express how frequently a
neuron s has fired based on a simplified model of how the
efficacy of an habituating synapse reduces over time [12]. The
habituation counter is given by

η(st) = η0 −
S(t)

α
· (1− exp(−αt/τ)), (1)

where η(st) is the size of the firing rate for neuron st, η0 is
the resting value, S(t) is the stimulus strength, and τ , α are
constants that control the behaviour of the curve. A neuron



n is considered to be well trained when η(n) is greater than
a firing threshold ηT . This is in favour of training existing
neurons before creating new ones. New nodes can be created
any time if the activity of well-trained neurons is smaller than
an activity threshold aT . The GWR algorithm will then iterate
over the training set until a given stop criterion is met, e.g. a
maximum network size or a maximum number of iterations.

Hierarchical learning is carried out by training a higher-
level network with neuron activation trajectories from a lower
level network. These trajectories are obtained by computing the
best-matching neuron of the input sequence with respect to the
trained network with N neurons, so that a set of trajectories
of length q is given by

Ωq(xi) = {wb(xi),wb(xi−1), ...,wb(xi−q+1)} (2)

with b(xi) = arg minj∈N ‖xi − wj‖.
The STS-1 layer integrates pose-motion features by train-

ing the network with vectors of the form

Ψ = {Ωq(X),Ωq(Y)}, (3)

where X and Y are the activation trajectories from the pose and
motion pathways respectively. After STS-1 training is com-
pleted, each neuron will encode a sequence-selective prototype
action segment.

B. GWR-based Associative Learning

For the higher layer STS-2, we extended the standard
GWR algorithm with: 1) asymmetric neural connectivity based
on Hebbian learning, and 2) semi-supervised labelling func-
tions so that prototype neurons can be attached to symbolic
labels during training. The detailed learning procedure for
the creation and update of existing neurons is illustrated by
Algorithm 1.

Local lateral connectivity in self-organizing networks is
responsible for the correct formation of the topological map.
We enhanced standard neuron connectivity by taking into
account inherent temporal relations of the input, so that con-
nections between neurons that are consecutively activated are
strengthened. For this purpose, we define a connection strength
function ρ that increases between activated neurons bt−1 and bt
at time t−1 and t respectively (Algorithm 1, Steps 6c and 7b).
This type of connectivity scheme is asymmetric in the sense
that ρ(bt−1, bt) increases while ρ(bt, bt−1) remains unchanged,
thereby fostering temporally-ordered representations of actions
from neuron activation trajectories.

We extend the unsupervised GWR for semi-supervised
learning so that action labels will be attached to prototype
neurons during the training phase in an online fashion (Al-
gorithm 1, Steps 6d and 7c). We implement a mechanism
for label propagation that takes into account how well trained
neurons are before propagating labels to their neighbours. For
this purpose, we define two labelling functions: one for when
a new neuron is created, and the other for when the neuron
is updated. Provided that bt is the index of the best-matching
neuron and that ξt is the label of xt, and that we denote a
missing label with −1, when a new neuron rt is created, its
label λ(rt) is assigned according to:

γnew(bt, ξt) =

{
ξt ξt 6= −1

λ(bt) otherwise
(4)

Algorithm 1 Semi-supervised Associative GWR
1: Create two random neurons with weights w1 and w2

2: Initialize an empty set of connections E = ∅.
3: At each iteration t, generate an input sample xt
4: For each neuron n, select the-best matching node and the

second-best such that:
bt = arg minn∈A ‖xt − wn‖
st = arg minn∈A/{bt} ‖xt − wn‖

5: Create a connection if it does not exist
5a: E = E ∪ {(bt, st)} and set age of Ebt,st to 0.

6: If (exp(−‖xt − wbt‖) < aT ) and (η(bt) < fT ) then:
6a: Add a new neuron rt between bt and st with
wrt = κ · (wst + xt)
6b: Create edges and remove old edge:
E = E ∪ {(rt, bt), (rt, st)} and E = E/{(bt, st)}
6c: Connection strengths: ρ(bt−1,rt) = 1, ρ(bt−1,bt) = 0
6d: Initialize label: λ(rt) = γnew(bt, ξt)

7: Else, i.e. no new neuron is added, update wbt and its
neighbours i:
7a: ∆wbt = εb · η(bt) · (xt − wbt) and ∆wit = εn · η(i) ·
(xt − wit),
with 0 < εn < εb < 1 ents’ request only, except (of
course) you distribute your own 7b: Increase connection
strength ρ(bt−1,bt)

7c: Update label: λ(bt) = γupdate(bt, st, ξt)
7d: Increment the age of all edges connected to bt.

8: Reduce the firing counters η according to Eq. 1.
9: Remove all edges with ages larger than amax and remove

neurons without edges.
10: If the stop criterion is not met, go to step 3.

Provided that st is the index of the second best-matching
neuron, the update labelling function for λ(bt) is defined as:

γupdate(bt, st, ξt) =


ξt ξt 6= −1

λ(st) (ξt = −1) ∧ (η(st) ≥ ηT )

λ(bt) otherwise
(5)

This mechanism results in the correct propagation of labels
so that labels attach to neurons based on the co-occurrence
of audiovisual inputs, thereby avoiding the need of manual
segmentation for ground-truth labelling.

C. Action-Word Mappings

During the learning in STS-2, unsupervised visual rep-
resentations of actions are linked to symbolic action labels
λj ∈ L, with L being the set of j possible words. Action words
will then have a one-to-many relation with STS-2 neurons, i.e.
neurons can be attached to only one label in L. It is possible
that neurons change label during the learning phase based on
the self-organizing process of label propagation. For clarity,
we now refer to the symbolic connectivity layer of words as
the ”action words” layer (AWL).

The development of connections between STS-2 and AWL
depends upon the co-activation of audiovisual inputs. More
specifically, the connection between a STS-2 neuron and its
symbolic label in AWL will be strengthened if the neuron
is activated within a time window in which also the label is
activated by an audio signal. In the case that no audio stimulus
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occurs during the creation or adaptation of a STS-2 neuron,
symbolic labels will instead be updated according to our semi-
supervised label propagation rules (Eq. 4 and 5). This scheme
takes into account the temporal order of activation in a given
sequence of consecutively fired neurons. This is in favour of
the generation of temporally-ordered trajectories generalizing
one prototype action sequence. For a generic labelled neuron i
fired at time t, its connection strength with the symbolic label
λj becomes:

Λ(i, λj , t) = 2 · [exp(η(i) + c(λj , t))]
−1, (6)

where c(λj , t) is the sequence counter and exp(η(i) +
c(λj , t)) expresses the exponential relation between the firing
counter of the neuron and its sequential order within the
set of neuron activations with the same label. This function
yields greater values for connections of well-trained nodes that
activate at the beginning of a sequence. The counter c(λj , t)
will increase while λ(bt) = λj(t) and reset when this condition
does not hold. The temporal strength function for different
firing rates and sequence counters is depicted in Fig. 2 for
a window of 5 neuron activations. A diagram of inter-layer
connectivity between STS-1, STS-2, and AWL is shown in
Fig. 3.

D. Action Word from Visual Recognition

At recognition time, we classify previously unseen video
sequences to match one of the training actions. For this
purpose, we define a recognition function ϕ : Ω → Λ on
the basis of a single-linkage strategy [19] such that each new
trajectory sample ωnew from STS-1 is labelled with an action
word λj ∈ Λ associated to the STS-2 neuron w that minimizes
the distance to the new sample:

ϕ(ωnew) = arg min
λj

(arg min
w∈N(λj)

‖wn − ωnew‖). (7)

The hierarchical flow is composed of 4 networks, with each
subsequent network neuron encoding a window of 3 neurons
from the previous one, with the exception of STS-2, which
processes 4-neuron trajectories. Therefore, this classification
algorithm returns a new action label every 10 samples (1
second of video operating at 10 frames per second). By
applying a temporal sliding window scheme, we get a new
action label for each frame.
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Fig. 3. Inter-layer connectivity scheme: Neurons in the STS-2 layer result
from the hierarchical learning of STS-1 activation trajectories. STS-2 neurons
use recurrent connection strength ρ to preserve temporal relations of the input.
Connectivity between STS-2 and AWL emerges taking into account neuron
firing rates and the order of activation.

E. Visual Sequence from Action Word

We use the strength function ρ to obtain prototype visual
representations of actions from recognized action words. We
expect that each action word will activate a trajectory that
represents a prototype action sequence in the STS-2 layer.
Therefore, after recognizing an action word λj from speech,
the STS-2 neuron that maximizes Eq. 6 is selected as the
first element of a sequence and used to generate temporally-
ordered prototype representations of actions by recursive ρ-
connectivity. This mechanism can be used in practice to
assess how well the model has learned action dynamics and
whether it has accounted for linking action words to visual
representations.

III. EXPERIMENTS

We now present our experimental set-up and results on a
dataset of full-body actions. In contrast to previous training
procedures [15][16], for these experiments action samples
from sequential frames were not manually segmented. Instead,
action labels were recorded from speech so that action-word
mappings of training samples resulted from co-occurring au-
diovisual inputs using our label propagation strategy. To eval-
uate our system, we compared new obtained results with re-
cently reported results using GWR-based hierarchical process-
ing with manual segmentation for ground-truth labelling [16].

A. Audiovisual Inputs

Our action dataset is composed of 10 full-body actions
performed by 13 subjects [15]. Videos were captured in a
home-like environment with a Kinect sensor installed 1,30 m
above the ground. Depth maps were sampled with a VGA res-
olution of 640x480, an operation range from 0.8 to 3.5 m at 30
frames per second. The dataset contains the following actions:
standing, walking, jogging, sitting, lying down, crawling, pick
up, jump, fall down, and stand up. From the raw depth map
sequences, 3D body joints were estimated on the basis of the
tracking skeleton model and actions were represented by three
body centroids (Fig. 4) as described in [15].
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Fig. 4. Representation of full-body movements from our action dataset [15].
We estimate three centroids: C1 (green), C2 (yellow) and C1 (blue) for upper,
middle and lower body respectively. The segment slopes θu and θl describe
the posture in terms of the overall orientation of the upper and lower body.

For recording action labels, we used automatic speech
recognition from Google’s cloud-based ASR enhanced with
domain-dependent post-processing [18]. The post-processor
translates each sentence in the list of candidate sentences re-
turned by the ASR service into a string of phonemes. To exploit
the quality of the well-trained acoustic models employed by
this service, the ASR hypothesis is converted to a phonemic
representation employing a grapheme-to-phoneme converter.
The word from a list of in-domain words is then selected as the
most likely sentence. An advantage of this approach is the hard
constraints of the results, as each possible result can be mapped
to an expected action word. Reported experiments showed that
the sentence list approach obtained the best performance for
in-domain recognition with respect to other approaches on the
TIMIT speech corpus1 with a sentence-error-rate of 0.521. The
audio recordings were performed by speaking the name of the
action in a time window of 2 seconds during its execution, i.e.
for each repetition in the case of jump, fall down, and stand
up, and every 2 seconds for cyclic actions (standing, walking,
jogging, sitting down, lying down, crawling). This approach
has the advantage of assigning labels to continuous video
streams without the manual segmentation of visual features.

B. Evaluation

For a fair comparison with previous results, we adopted
similar feature extraction and evaluation schemes. We divided
the data equally into training and test set, i.e., 30 sequences
of 10 seconds for each periodic action (standing, walking,
jogging, sitting, lying down, crawling) and 30 repetitions for
each goal-oriented action (pick up object, jump, fall down,
stand up). Both the training and the test sets contained data
from all subjects. For GWR learning, we used the following
training parameters: insertion threshold aT = 0.9, learning
rates εb = 0.3, and εn = 0.006, κ = 0.5, maximum age
amax = 50, firing counter parameters η0 = 1, τb = 0.3,
τn = 0.1, firing threshold ηT = 0.01. For a more detailed
discussion on training parameters, please refer to Parisi et
al. [16]

Experimental results showed that our new approach per-
forms very well (93, 3% average accuracy) with respect to
our previous approach based on manual segmentation (94%
average accuracy). The confusion matrix for the 10 actions
is shown in Fig. 5 (with the rows of the matrix being the
instances of actual actions and columns being the instances

1TIMIT Acoustic-Phonetic Continuous Speech Corpus: https://catalog.ldc.
upenn.edu/LDC93S1

Stan
din

g

Walk
ing

Jo
gg

ing
Sitti

ng
Ju

mp

Pick
 up

Fall
 do

wn

Ly
ing

 do
wn

Stan
d u

p

Craw
lin

g

Predicted label

Standing

Walking

Jogging

Sitting

Jump

Pick up

Fall down

Lying down

Stand up

Crawling

Tr
ue

 la
be

l

30

29 1

2 28

1 27 1 1

2 28

1 28 1

28 2

1 3 26

1 1 28

2 28
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5. Confusion matrix for our dataset of 10 actions. The average accuracy
is 93,3%.

Si
t 

do
w

n
Pi

ck
 u

p

40 frames / 4 seconds

Fig. 6. Example of visual representations in STS-2 that maximize inter-layer
connectivity for the actions ”Sit down” and ”Pick up” generated by speech
recognition.

of predicted actions). These promising results encourage to
extend our current neural architecture in several directions.

To have a qualitative idea of how well the associative
layer has learned action dynamics, we extracted STS-2 neuron
trajectories with the first neuron being activated by maximizing
the temporal connection strength function (Eq. 6) and the
subsequent 4 neurons obtained with ρ-connectivity. The visual
representations of the actions ”Sit down” and ”Pick up” for a
time window of 40 frames (4 seconds) are shown in Fig. 6,
from which we can argue that the associative layer successfully
learns temporally-ordered representations of input sequences.

IV. CONCLUSIONS AND FUTURE WORK

We presented a hierarchical neural architecture for action
recognition from audiovisual inputs. In particular, we investi-
gated how associative links between unimodal representations
can emerge from the co-occurrence of multimodal stimuli in
a self-organized manner. Experimental results on a dataset of
10 full-body actions have shown that our learning mechanism



does not require the manual segmentation of training samples
for an accurate recognition. Instead, generalizations of action
sequences are incrementally learned and mapped to symbolic
labels using the co-activation of audiovisual inputs. For this
purpose, we proposed a type of bidirectional, inter-layer con-
nectivity that takes into account the spatiotemporal dynamics
of action samples.

Similar to Vavrečka and Farkaš [4], we argue that the
co-occurrence of sensory inputs is a sufficient source of
information to create robust multimodal representations with
the use of associative links between unimodal representations
that can be progressively learned in an unsupervised fashion.
Interestingly, our implementation with bidirectional action-to-
word connections roughly resemble a phenomenon found in
the human brain, i.e. spoken action words elicit receptive fields
in the visual area [13]. In other words, visual representations
of generalized actions can be activated in the absence of visual
inputs, in this case from speech. We have shown that this
property can be used in practice to assess how well the model
has learned action dynamics.

This work represents the effort towards a more sophisti-
cated learning-based model for the emergence of cognitive
representations through the self-organizing development of
associative links between different modalities. Current research
work aims to leverage the proposed neural architecture in sev-
eral directions. For instance, with our current implementation,
we assume that labels are provided from speech during the
training session for all the action samples. We are currently
investigating the scenario in which labels are not always pro-
vided during training sessions, as it is also the case in nature.
Several developmental studies have shown that human infants
are able to learn action-label mappings using cross-situational
statistics, thus in the presence of not always available ground-
truth action labels [8]. Another limitation of our model is the
use of domain-dependent ASR. In the future, we plan to avoid
this constraint by accounting for learning new lexical features
so that the action vocabulary can be dynamically extended
during training sessions. For instance, it has been shown that
lexical features can be learned using recursive self-organizing
architectures [20][21]. Finally, we plan to evaluate our learning
architecture with benchmark datasets using a greater number
of body features. This is aimed to achieve more complex visual
tasks such as the recognition of transitive actions.
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