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Abstract—Robots are increasingly tested in socially assistive
scenarios. Future applications range from dieting, coaching,
tutoring to autism therapy. In order to have a successful
interaction with an artificial system, these systems need to have
an interactional motivation model of how to assist users and
encourage them to keep on with the task. In previous work,
we have investigated how to build such a model for a specific
scenario (e.g. indoor cycling). In this paper we want to show how
to advance this model to be generalizable for other sport scenarios
like rowing or bodyweight training. Therefore, we describe our
framework for coordinating interaction scenarios with socially
assistive robots.

I. INTRODUCTION

Research in Socially Assistive Robotics (SAR) aims at
designing scenarios, where robots instruct people during re-
habilitation tasks, diet coaching or cognitive tasks [3, 6, 7].
Those scenarios and systems are often build from scratch and
underlying interactional instruction patterns are hand-crafted
for each scenario. This leads to recurring implementation
of interaction structures for each scenario that are hard to
compare across different systems or use cases. To the authors
knowledge, few publications in SAR research exists which
describe the architecture of their proposed SAR systems with a
focus on how motivational feedback is generated and defined.
Mead et. al. [9] describe in their paper an architecture for
rehabilitation task practice in SAR. They describe a system
offering different server and controllers managing the in-
teraction between the robot and the human. However, it is
not presented how the conversational feedback for motivating
the user is designed during the rehabilitation tasks. In [5],
Jayawarden et. al. propose a three layered architecture for
rapid prototyping of SAR system and easy to use behavior
description for subject matter experts (SME). However, the
focus of their implementation was not on general motivational
patterns robots can use for providing assistance. Therefore, the
interaction and feedback provided by the robot is customized
by the SME during an iterative end-user design process.

Because SARs usually provide hands-off support through
verbal interaction and physical presence, the main challenge
is to establish a common concept of the user’s motivation and
the compliance to interact with such systems. To evaluate and
compare the effectiveness of the SARs (i.e. the encouraging
support), needs to be modeled in interaction patterns that are
reusable across different domains and applications. Reusability

of common concepts and frameworks, which capture motiva-
tional support, in this domain can help researchers to measure
the progress in this scientific field and to improve on previous
established patterns. In previous work, we have targeted the
application scenario of an robotic indoor cycling coach. During
our investigations we have developed a motivational interac-
tion model, which we have evaluated in an extended long-term
study [14]. Currently, we are working on the generalizability
of this model for different sport domains. We have advanced
our previous implementation to ease to process of designing
sport scenarios with robot assistance. Therefore, we pursue
an integrated framework approach which targets four main
advantages:

• Help non-expert programmers to implement robotic-
assistance scenarios using a domain-specific language,

• use the same instruction patterns for each scenario,
• provide an easy to use configuration setup for the system

to make decisions, and
• make components reusable.
We hope that the generalizability and reusability of our

approach will help to build a toolbox which eases the process
to explore new scenarios that require social assistance. The
paper is organized as follows, first we will give a brief
introduction of motivation as a key component for building
SAR robots. Afterwards, we will explain our prior research
efforts in this domain. In Section IV, we explain our current
framework for designing SAR robotic scenarios and end our
explanation in Section VII with an introduction of our current
target scenarios. At last, we give a discussion and conclusion.

II. MOTIVATION: A KEY COMPONENT

In order to develop a common concept of motivational
support for SARs, it is indispensable to identify the key
components of motivation from the viewpoint of different
disciplines. Motivational psychology discriminates two types
of motivation: extrinsic and intrinsic motivation [4]. Extrinsic
motivation itself can be divided into instrumental motivation,
external self conception and goal internalization. Instrumental
motivation influences the behavior of people based on a
prospective external reward. External self conception is based
on the perception of the ideal from one’s personal role and the
expectation of one’s social surrounding. Goal internalization
means that people make the corporate/institutional goals as



their own. In contrast, intrinsic motivation is divided into
intrinsic process motivation, which means that someone is
doing a task because of enjoying to do the task, and internal
self conception, referring to behavioral change based on per-
sonal values and standards. Research has shown that intrinsic
motivation is more effective for long-term interventions. Thus,
many assistive systems make use of the theory of flow [1] for
their task assistance and adapt the task difficulty to match the
user’s individual optimal challenge [2, 8]. Hence, motivation
is often defined as a force which drives human behavior.
This definition focuses on the internal states of an individual
person. However, in socially assisted scenarios one main goal
is also to collaboratively achieve a target. Therefore, also
a sociological and linguistic perspective is important, which
analyzes the different multi-modal cues during interactional
processes. This means that some form of communication
needs to be established which helps express one’s desires and
intentions. Therefore, future systems ideally also need to deal
with wrong communication, need to have repair mechanisms
and have a concept of when to trigger which kind of supportive
feedback in a multi-modal manner in order to achieve a goal-
oriented interaction [11].

III. PREVIOUS WORK

In our previous work we have investigated the instructional
structures and motivational strategies that human trainers in-
corporate into everyday workout (i.e. indoor cycling) in real
world Human-Human Interaction. During field investigations,
we recorded and observed the interaction between a coach
and an athlete during indoor cycling session. The goal of
this investigation was to identify some common interactional
patterns or concepts of feedback and acknowledgment that
coaches use to motivate and engage their athletes [13]. A
qualitative analysis revealed a complex multimodal structure
of motivation-relevant processes that are fine-grained and
sequentially . This model had to be reduced to an interactive
action-based motivation model due to the limitations of current
robotic systems (see Fig. 1).

It captures the aspects of preparation, instruction, acknowl-
edgment, repair and feedback (i.e. continuer-, encouraging-
, positive-, end-oriented- feedback) in a systematic way for
a single exercise instructions/movements. It has been imple-
mented for a robotic-assisted indoor cycling scenario [14].
The states of the model where modeled as state charts. The
transition between states where triggered based on assigned
targets for each instruction and the resulting decision of
specific decision servers (i.e. cycling with a specific cadence,
power or posture). The implementation of this motivation
model describes the instructional and motivational structure of
static movement patterns (e.g. cycling with a target cadence)
and cyclic repeating movement patterns (e.g. doing push ups,
standing up - sitting down) in robotic assisted indoor cycling
and has yet been tested only in this domain.

Fig. 1: Interactive action-based motivation model [14].

(a) Static Movement Instructions.

(b) Cyclic Movement Instructions.

Fig. 2: Generic instruction patterns for robot assisted sport
scenarios.

IV. TOWARDS A REUSABLE MOTIVATIONAL INSTRUCTION
MODEL FOR SOCIALLY ASSISTIVE ROBOTS

In our current work, we want to make these instruction
models applicable for different sport domains as well as
intuitive and reuseable for non-expert users. Our proposed
scenario design for socially assistance is depicted in Figure
3. In the following, we explain and motivate the different
concepts (e.g. scenario coordination and decision server) of
our design.

A. Scenario Coordination

The scenario coordination is implemented using a domain
specific language (DSL) which is automatically transformed



Fig. 3: Proposal for socially assistive scenario description.

to valid State-Chart XML1 code (SCXML)[15]. State charts
are commonly used to describe and coordinate the behavior of
programs using events. Also the depicted movement patterns
(see Fig. 2) are specified using the DSL. This specification
includes the communication between different components in
a distributed system and therefore simplifies the coordination
(for details regarding the middleware see Section V of [10]).
As tool, we use the Meta Programming System developed by
JetBrains 2.

Each scenario is a state machine in which a number of
different movements can be embedded and configured. Those
movements represent the different exercises that a social robot
can enquire a user to do. The movements are configured
using the XML format. This configuration includes the actual
dialog acts the robot produces during the different states of
a movement as well as different targets (e.g. joint angle
configuration of the user, speed or number of repetitions of
exercises). Dialog acts can be any other state machine specified
in our DSL. They can be simple text-to-speech acts, but also
more complex dialog acts offered by a dialog system or even
movements itself.

B. Hierarchical Instruction Patterns

Previously, each state was assigned one verbal instruction
from the robot. However, for teaching or learning scenarios
it is important that states can trigger interaction movements
also. Therefore, we have introduced an hierarchical concept in
the current design of our interaction models. This means that
each state of a static or cyclic movement can be a movement
itself (see Fig. 3, Movement 1 initiates Movement 1.1). This

1http://www.w3.org/TR/scxml/
2https://www.jetbrains.com/mps/

approach allows to trigger an instructing movement in which
the robot helps the person to reach a specific pose required for
an exercise or to trigger a correcting exercise if the execution
of the user was not adequate.

C. Forward-Backward Cycle for Cyclic Instructions

Cyclic instructions are important for exercises where the
user changes his/her position. Consider doing push ups. The
user goes down towards the ground and up again which
results in a complete push up cycle. For scenarios where
the robot and the user are doing an exercise simultaneously
together (see Figure 6) the interaction models needs to allow a
synchronous execution. This requires the model to have states
for going to different positions during a cyclic movement and
to synchronize the action of the robot and the user at some
point. This synchronization is achieved by a waiting task.
During the wait task the decider verifies if the user has reached
the desired position. If the user does not comply, the system
will run into a time out and continues with the next execution
of the cycle. However, there exist also exercises where the
order of different states of the exercises are important one
synchronization point is not sufficient. We have introduced
the concept of act-/react-actions for this issue (see Figure 4).
Those actions take place during the forward or backward states
of the cyclic movement.

(a) The act-action.

(b) The react-action.

Fig. 4: Two possible actions for the forwad-backward states

1) Act-Instructions: During react-actions, the user is in
charge of the tempo of the exercise execution and the robot
follows the user‘s lead.

2) React-Instructions: In act-actions the robot is initating
the exercises and waits for the user to follow.

http://www.w3.org/TR/scxml/
https://www.jetbrains.com/mps/


V. DYNAMIC DECISION COMPONENT

While the scenario coordination configures the interaction
movements and executes them, the decision component re-
ceives the necessary information to make decisions during
movement runtime (see Figure 3). Those decisions include
recommendations to give a reparation, instruction, to praise
the user or to terminate a movement. In the following, we
describe the modular architecture of our decision system that
is tailored to give designers of SAR scenarios the opportunity
to build on a common framework for motivational support.

In general, decisions in assistive scenarios are based on
some kind of data (e.g. strings, numbers, classification results).
The way how decisions are made is inherently different
between scenarios and implementation.

To give a main guidance for configuring decision systems
and to add flexibility in the decision configuration for different
scenario, we have implemented a data-processing system.
This approach eases the process of deciding for different data
types.

For each data type specific algorithms can be running which
process the data and fulfill a special task. These algorithms are
configurable and can be intertwined to solve more complex
problems. The system defines components as well as input-
and output-slots which can be connected.

A. Configurable Data-Processing Pipeline

There is a variety of components that can be used to
configure a data-processing pipeline available. In the following
we explain the current different categories that are used in our
system:

1) datasource: Data sources create initial data, which are at
the moment SimpleRSBDataSource. This source receives data
from our used middelware Robotic Service Bus (RSB)[16].
The data source is configured using a scope, where the data
events are expected, and an expected data type. Additional,
there is the ManualDataSource which purpose is for Unit-tests.

2) transformations: Transformations transform, as ex-
pected, data into another data format. Since we are currently
using a lot of skeleton information from the Kinect, which
are represented as XML-strings in our system, we have a
transformation component that deserializes the skeleton joints
in 3D vector objects. Furthermore, we have a component that
calculates the joint angle from three 3D vector objects. Hence,
it is possible to compute each joint angle by configuration.
Additionally, there is a transformation component which de-
serializes JSON data types. At last, we have a descriptive
statistic components from the Apache Commons math library3.
This components allows to compute a running mean or median
from incoming numerical values.

3) deciders: Deciders transform in-slots to decision results.
Currently, there is a decider for floating point numbers, which
verifies that an incoming value is in a specific range and a
decider for classification results which calculates the entropy
and only passes on a decision if the entropy falls below a

3https://commons.apache.org/proper/commons-math/

threshold. For example, those thresholds are certain joint angle
configuration the user has to reach or a specified cadence he
has to cycle. Since joint angle configurations are mostly the
same for many people, we do not have to adapt the threshold.
Regarding sports like indoor-cycling, we have run a fitness test
with participants to determine their individual thresholds. In
the future, those thresholds can also be adapted due to training
adaption effects.

Furthermore, there are deciders that filter decisions of other
components. This decider can be configured to pass on a
negative decision only when it had been raised during a
specific time period. At last, there exists the one of many
positive deciders which checks whether one of many decisions
are positive.

B. Local and Global Decisions

Each interaction session has a set of pairs of static and
dynamic decision pipelines. One of these pairs reflects one
exercise target of a movement (e.g. cadence of user during the
cycling scenario). The static part is identical for each session
and the dynamic part is distinct for one session. Furthermore,
the static part is shared across sessions and usually does time
dependent/consuming computations (e.g. average filter). The
dynamic part always consists of at least one decider, which
provides local decisions based on the results of the static part
and the targets of the current movement.

Local decisions are represented as a decision reason which
consists of the name of the parameter, the local decision, a
timestamp and a boolean variable good, which indicates if a
decision is negative or positive and reflects whether a goal is
violated or not.

During one session all local decisions are collected into a
decision bag (see Fig. 5). The decision bag is verified by the
decider which then gives a guidance for a specific supportive
behavior of the assistive system. Current implemented deciders
are:
Simple Decider: The simple decider evaluates the decision

bag for errors. Encountered errors are attached to the
decision reason. If any errors are found, a repair advice
will be send and the guidance is set to failed. If there is
no error, an acknowledge is send.

Hierarchic Reaching: The hierarchic reaching allows to
decide on multiple concurrent parameters. If one or
many parameters are violated the hierarchic reaching can
decide which parameter has priority.

Hierarchic Monitoring: The hierarchic monitoring decider
is also an hierarchical decider. Instead of evaluating
whether a target has been reached, it observers the
specified parameters for a longer range of time.

At last, we have implemented components that evaluate
the decisions. Those, are separated into evaluation strategies
and finishing strategies. Those classes are decoupled from the
decider because sometimes it is necessary to evaluate the state
of the interaction due to different scenarios or contexts. The
same goes for the finishing component, which can trigger
the termination of a session, which in turn can trigger a

https://commons.apache.org/proper/commons-math/


Fig. 5: Overview of the decision system.

supportive behavior. Currently we distinguish five different
types of guidance: continue, repair, acknowledge, finished and
failed. The details of the different guidance are:
continue: No reason for a change in the current situation.
repair: The known reasons make a reparation necessary.
acknowledge: The reasons favor a praise.
finished: The last known state was accurate.
failed: The last known state required a reparation.

The evaluation and finishing strategies are usually triggered
after a certain amount of time has exceeded or after a threshold
of specified events has been reached.

VI. USAGE

So far we have described the different concepts that we
see as building blocks for designing socially assistive robot
scenarios. When a user wants to build a new scenario s/he
can define an interaction flow using our provided IDE for
developing RSB systems [10]. The user has to define at which
points in the interaction what kind of movements should
be triggered. If the user needs to define new movements,
because there is no suitable movement configuration available,
s/he can configure a new movement in XML format (for
the limitation of the paper we will not include a detailed
configuration) and define what the system should do depending
on different measures. Those measures can be skeleton data,
performance data from indoor bike, classification results or
also new data provided from the user which are specific for a
certain kind of scenario (e.g scores on a cognitive task [7, 12]).
Depending on the type and goals of the intented scenario the
user has to define what her/his parameters are. However, if
certain parameter configuration already exist they can be easily
included into a new configuration.

VII. TARGET SCENARIOS

In the previous section, we have introduced the different
concepts and implementations that we have used to create
a scenario coordination for SAR. We hypothesise that the
described motivational concepts are universal across different
scenarios or applications of SAR and that the set of function-
alities is sufficient to many purpose.

To evaluate the generalizability of our proposed scenario
coordination and motivational movement patterns, we have
implemented three different robot-assisted sport scenarios. You
can see examples of Human-Robot Interaction scenarios in
Figure 6. In the following we briefly describe our current
scenarios:

Indoor Cycling: During the indoor cycling scenario the
robot is instructing the user to cycle at different speed or
resistance and in different positions like standing, sitting
or doing push ups on the bike. Each movement is finished
after a specific time which is based on the length of
the different songs that are played during the indoor
cycling session. We have evaluated this scenario during
a extended long-term study [14]

Rowing: In the rowing scenario the robot acts as a teacher
explaining the user the different typical positions of a
rowing stroke. It uses the concept of hierarchic reaching
and repairs wrong stroke execution based on the follow-
ing hierarchy: legs, back, arms. If one of the parameters
is violated the system starts a movement which explains
the correct execution of an exercise. We will compare
this scenario against an interactive video which also
explains the execution of a rowing stroke. As measure we
will use the retention accuracy of how good participants
remembered the steps of a rowing stroke after one week.

Body Weight Training: This scenarios aims at exploiting
the embodiment of the robot. The robot and trainee
do different exercises together (e.g. push ups, squats,
lunges, etc.). We will implement different scenarios to
test whether the user prefers robot initiated movements
(see Fig. 4a) or self-initated movements (see Fig. 4b) and
evaluate how different feedback strategies influence the
assistive capabilities of the system.

For all scenarios we use the same robot (i.e. Nao) in order
to exclude effects due to the embodiment or appearance of
the robot. Furthermore, we use the same decision system and
scenario coordination as well as similar perceptive systems
(skeleton tracking, heartrate, depth image of the user). We
only needed to configure the explicit instructions and decision
criteria which are unique for each interaction scenario.
Hence, we have acquired a state of the system where it is
possible to reuse the same motivational model in all applica-
tions and use the same framework and implementations to
create unique scenarios without worrying about implemen-
tational details. However, we need to evaluate whether the
motivational model derived from indoor cycling scenarios is
indeed applicable for other sport domains. Therefore, we will
extensively test our target scenarios and evaluate the assistance
in each scenario.

The implementation of these different scenarios results in a
variety of different decision tasks and movement configuration.
This different configurations are also reusable across scenarios
and usable in new scenarios. We will work on building a set
of configurations for movement and decision tasks that can be
easily used when implementing a new SAR scenario.



(a) Nao as spinning instructor.

(b) Nao as rowing instructor

(c) Nao as bodyweight instructor.

Fig. 6: Different target scenarios using our proposed scenario
coordination and movement patterns

At last, the concept of acknowledgement and reparation
allows to easily compare different configurations for one
scenario. The number of needed repairs can be used as a
measurement to assess the effectiveness of the current con-
figuration or classification system.

VIII. CONCLUSION

In this paper we have presented our proposed framework
for designing and coordinating scenarios for socially assistive
robot based on motivational instruction patterns. We have
introduced the key concepts and components that will help
to guide the design of scenarios across different application
domains. Furthermore, we have presented three different sport
scenarios where we already use our proposed framework. We
hope that in the future, our approach can be used to better
evaluate different scenarios using different robots which are
based on the same underlying models.

In upcoming implementations, we also target to develop a
domain specific language model for the configuration of move-

ment and decision tasks. We hope this will enable non expert
programmers to develop and configure instructions for new
scenarios or enhancing and reusing existing implementations.

From a motivational perspective, we currently focused on
motivation from a multi-modal instructional point of view. In
the future, we will further work on the relation between the
instructional model and the psychological model of motivation.
Since every person needs different types of motivation strate-
gies, it might also help to include a further layer in the current
model. This layer can describe what kind of motivational
instruction, in relation to extrinsic motivation, is appropriate
for which kind of user.
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