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Cognitive Development in Human Infants 



Cognitive Development in Robots 

[Nagai, Kawai, & Asada, ICDL-EpiRob 2011; 
Kawai, Nagai, & Asada, IROS 2012] 

[Horii, Nagai, & Asada, ICDL-EpiRob 2013] 

[Ugur, Sahin, Nagai, & Oztop, TAMD 2015] 

[Nagai, Nakatani, & Asada, EpiRob 2010] 

[Nagai, Hosoda, Morita, & Asada, 
Connection Science 2003] 
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What is the root for cognitive development? 
(i.e., innate abilities of infants) 

 



Our Theory [Nagai & Asada, 2015] 

Predictive learning of sensorimotor information (i.e.,  
minimizing prediction error ei(t+1)) leads to cognitive development. 

Prediction error 
ei(t+1) = si(t+1) ! !i(t+1) 

Sensory state 
si(t) 

Motor command 
aj(t) Sensory feedback 

si(t+1) 
Sensory feedback Sensory feedback Sensorimotor 

system 

Predicted sensory feedback 
!i(t+1) 

Predicted motor command 
âj(t+1) Efference copy 

!!

Predictor 

Sensorimotor Sensorimotor 

(Modified from [Blakemore et al., 1999]) 



Our Theory [Nagai & Asada, 2015] 

Predictive learning of sensorimotor information (i.e.,  
minimizing prediction error ei(t+1)) leads to cognitive development. 

(1) Update the predictor through 
sensorimotor experiences 
 ! Self-other cognition 
 ! Goal-directed action, etc. 

(2) Execute a predicted action in 
response to others’ action 
 ! Imitation 
 ! Prosocial behavior, etc. 

ei(t+1) 

si(t) 
aj(t) si(t+1) Sensorimotor 

system 

!i(t+1) 
âj(t+1) â

Predictor 

s

Predictor 

ei(t+1) 

si(t) 
aj(t) si(t+1) Sensorimotor 

system 

!i(t+1) 
âj(t+1) âjâjâ

Predictor 

s



Increasing Interest in Predictive Learning 

Predictive coding under the free-energy principle
Karl Friston* and Stefan Kiebel

The Wellcome Trust Centre of Neuroimaging, Institute of Neurology, University College London,
Queen Square, London WC1N 3BG, UK

This paper considers prediction and perceptual categorization as an inference problem that is solved
by the brain. We assume that the brain models the world as a hierarchy or cascade of dynamical
systems that encode causal structure in the sensorium. Perception is equated with the optimization or
inversion of these internal models, to explain sensory data. Given a model of how sensory data are
generated, we can invoke a generic approach to model inversion, based on a free energy bound on the
model’s evidence. The ensuing free-energy formulation furnishes equations that prescribe the
process of recognition, i.e. the dynamics of neuronal activity that represent the causes of sensory
input. Here, we focus on a very general model, whose hierarchical and dynamical structure enables
simulated brains to recognize and predict trajectories or sequences of sensory states. We first review
hierarchical dynamical models and their inversion. We then show that the brain has the necessary
infrastructure to implement this inversion and illustrate this point using synthetic birds that can
recognize and categorize birdsongs.

Keywords: generative models; predictive coding; hierarchical; birdsong

1. INTRODUCTION
This paper reviews generic models of our sensorium
and a Bayesian scheme for their inversion. We then
show that the brain has the necessary anatomical and
physiological equipment to invert these models, given
sensory data. Critically, the scheme lends itself to a
relatively simple neural network implementation that
shares many features with real cortical hierarchies in
the brain. The basic idea that the brain tries to infer the
causes of sensations dates back to Helmholtz (e.g.
Helmholtz 1860/1962; Barlow 1961; Neisser 1967;
Ballard et al. 1983; Mumford 1992; Kawato et al. 1993;
Dayan et al. 1995; Rao & Ballard 1998), with a recent
emphasis on hierarchical inference and empirical Bayes
(Friston 2003, 2005; Friston et al. 2006). Here, we
generalize this idea to cover dynamics in the world and
consider how neural networks could be configured to
invert hierarchical dynamical models and deconvolve
sensory causes from sensory input.

This paper comprises four sections. In §1, we
introduce hierarchical dynamical models and their
inversion. These models cover most of the models
encountered in the statistical literature. An important
aspect of thesemodels is their formulation in generalized
coordinates of motion, which lends them a hierarchal
form in both structure and dynamics. These hierarchies
induce empirical priors that provide structural and
dynamical constraints, which can be exploited during
inversion. In §2, we show how inversion can be
formulated as a simple gradient ascent using neuronal
networks; in §3, we consider how evoked brain responses
might be understood in terms of inference under
hierarchical dynamical models of sensory input.1

2. HIERARCHICAL DYNAMICAL MODELS
In this section, we look at dynamical generative models
pð y;wÞZpð y jwÞp ðwÞ that entail a likelihood, p(yjw), of
getting some data, y, given some causes, wZ{x, v, q},
and priors on those causes, p(w). The sorts of models
we consider have the following form:

yZ gðx; v; qÞCz;

_xZ f ðx; v; qÞCw;
ð2:1Þ

where the nonlinear functions f and g of the states are
parametrized by q. The states v(t) can be deterministic,
stochastic or both, and are variously referred to as
inputs, sources or causes. The states x(t) meditate the
influence of the input on the output and endow the
system with memory. They are often referred to as
hidden states because they are seldom observed
directly. We assume that the stochastic innovations
(i.e. observation noise) z(t) are analytic, such that the
covariance of ~zZ ½z; z 0; z 00;.$T is well defined; simi-
larly, for w(t), which represents random fluctuations on
the motion of hidden states. Under local linearity
assumptions, the generalized motion of the output or
response ~yZ ½ y; y 0; y 00;.$T is given by

yZ gðx; vÞCz x 0 Z f ðx; vÞCw

y 0 Z gxx
0 Cgvv

0 Cz 0 x 00 Z fxx
0 C fvv

0 Cw 0

y 00 Z gxx
00 Cgvv

00 Cz 00 x000 Z fxx
00 C fvv

00 Cw 00

« «

ð2:2Þ

The first (observer) equation shows that the generalized
states uZ ½ ~v; ~x; $T are needed to generate a generalized
response or trajectory. The second (state) equations
enforce a coupling between different orders of the
motion of the hidden states and confer memory on the
system. We can write these equations compactly as
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Abstract Is it possible to understand the intentions of

other people by simply observing their actions? Many be-
lieve that this ability is made possible by the brain’s mirror

neuron system through its direct link between action and

observation. However, precisely how intentions can be
inferred through action observation has provoked much

debate. Here we suggest that the function of the mirror

system can be understood within a predictive coding
framework that appeals to the statistical approach known as

empirical Bayes. Within this scheme the most likely cause

of an observed action can be inferred by minimizing the
prediction error at all levels of the cortical hierarchy that

are engaged during action observation. This account

identifies a precise role for the mirror system in our ability
to infer intentions from actions and provides the outline of

the underlying computational mechanisms.

Keywords Mirror neurons ! Action observation !
Bayesian inference ! Predictive coding

Introduction

The notion that actions are intrinsically linked to percep-

tion was proposed by William James, who claimed, ‘‘every

mental representation of a movement awakens to some
degree the actual movement which is its object’’ (James

1890). The implication is that observing, imagining, or in

anyway representing an action excites the motor program

used to execute that same action (Jeannerod 1994; Prinz

1997). Interest in this idea has grown recently, in part due
to the neurophysiological discovery of ‘‘mirror’’ neurons.

Mirror neurons discharge not only during action execution

but also during action observation, which has led many to
suggest that these neurons are the substrate for action

understanding.

Mirror-neurons were first discovered in the premotor
area, F5, of the macaque monkey (Di Pellegrino et al.

1992; Gallese et al. 1996; Rizzolatti et al. 2001; Umilta

et al. 2001) and have been identified subsequently in an
area of inferior parietal lobule, area PF (Gallese et al. 2002;

Fogassi et al. 2005). Neurons in the superior temporal

sulcus (STS), also respond selectively to biological
movements, both in monkeys (Oram and Perrett 1994) and

in humans (Frith and Frith 1999; Allison et al. 2000;

Grossman et al. 2000) but they are not mirror-neurons, as
they do not discharge during action execution. Neverthe-

less, they are often considered part of the mirror neuron

system (MNS; Keysers and Perrett 2004) and we will
consider them as such here. These three cortical areas,

which constitute the MNS, the STS, area PF and area F5,

are reciprocally connected. In the macaque monkey, area
F5 in the premotor cortex is reciprocally connected to area

PF (Luppino et al. 1999) creating a premotor–parietal MNS

and STS is reciprocally connected to area PF of the inferior
parietal cortex (Harries and Perrett 1991; Seltzer and

Pandya 1994) providing a sensory input to the MNS (see

Keysers and Perrett 2004 for a review). Furthermore, these
reciprocal connections show regional specificity. Although

STS has extensive connections with the inferior parietal

lobule, area PF is connected to an area of the STS that is
specifically activated by observation of complex body

movements. An analogous pattern of connectivity between

premotor areas and inferior parietal lobule has also been
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only underlies motor but cognitive and social skills as wellî . Interest-
ingly, they note consolidation of memory traces after the initial acqui-
sition can ì result in increased resistance to interference or even
improvement in performance following an offline periodî . This is a
fascinating observation that suggests optimisation of the brain's gen-
erative model does not necessarily need online sensory data. Indeed,
there are current theories about the role of sleep in optimising the
brain's generative model, not in terms of its ability to accurately pre-
dict data, but in terms of minimising complexity. Mathematically, this
is interesting because surprise or model evidence can be decomposed
into accuracy and complexity terms; suggesting that model evidence
can be increased by removing redundant model components or pa-
rameters (Friston, 2010). This provides a nice Bayesian perspective
on synaptic pruning and the issues considered by Németh and
Janacsek (2012-this issue).

4. Active inference

As noted above, a simple extension to predictive coding is to con-
sider their suppression by the motor system. In this extension, predic-
tion errors are not just suppressed by optimising top-down or
descending predictions but can also be reduced by changing sensory
input. This does not necessarily mean visual or auditory input but
the proprioceptive input responding to bodily movements. As noted
above, the suppression of proprioceptive prediction errors is, of
course, just the classical reflex arc. In this view, motor control be-
comes a function of descending predictions about anticipated or pre-
dicted kinematic trajectories. See Fig. 1 for a schematic. The important
observation here is that the same sorts of synaptic mechanisms and
inferential principles can be applied to both perception and the con-
sequences of action. This nicely accommodates the literature on

error related negativity reviewed by Hoffmann and Falkenstein
(2012-this issue); who consider the ì monitoring of oneí s own ac-
tionsî and its role in adjusting behaviour. Again, the focus is on EEG,
suggesting that even within single trial recordings, the neurophysio-
logical correlates of behaviour-dependent prediction errors can be
observed empirically. In their words: ì The initiated response is com-
pared with the desired response and a difference; i.e., mismatch be-
tween both representations induces the error negativityî . This is not
the proprioceptive prediction error that drives reflex arcs but a high
level perceptual (or indeed conceptual) prediction error; suggesting
that the long-term hierarchical predictions of unfolding sensory and
kinematic changes have been violated. In other words, these phe-
nomena speak again to separation of temporal scales and hierarchies
in providing multimodal predictions to the peripheral sensory and
motor systems.

Active inference means that movements are caused by top-down
predictions, which means that the brain must have a model of what
caused these movements. This begs the interesting question as to
whether there is any sense of agency associated with representations.
In other words, if I expect to move my fingers and classical motor re-
flexes cause them to move, do I need to know that it was me who ini-
tiated the movement? Furthermore, can I disambiguate between me
as the agent or another. These are deep questions and move us on
to issues of self modelling and action observation:

5. Action observation and agency

In a nice analysis of agency, gait and self consciousness, Kannape
and Blanke (2012-this issue) start by acknowledging: ì Agency is an
important aspect of bodily self consciousness, allowing us to separate
own movements from those induced by the environment and to

Fig. 1. This figure illustrates the neuronal architectures thatmight implement predictive coding and active inference. The left panel shows a schematic of predictive coding schemes in
which Bayesian filtering is implemented by neuronal message passing between superficial (red) and deep (black) pyramidal cells encoding prediction errors and conditional pre-
dictions or estimates respectively (Mumford 1992). In these predictive coding schemes, top-down predictions conveyed by backward connections are compared with conditional
expectations at the lower level to form a prediction error. This prediction error is then passed forward to update the expectations in a Bayes-optimal fashion. In active inference,
this scheme is extended to include classical reflex arcs, where proprioceptive prediction errors drive action ó a (alpha motor neurons in the ventral horn of the spinal-cord) to elicit
extrafusal muscle contractions and changes in primary sensory afferents frommuscle spindles. These suppress prediction errors encoded by Renshaw cells. The right panel presents a
schematic of units encoding conditional expectations and prediction errors at some arbitrary level in a cortical hierarchy. In this example, there is a distinction between hidden states
xx that model dynamics and hidden causes xv that mediate the influence of one level on the level below. The equations correspond to a generalized Bayesian filtering or predictive
coding in generalized coordinates of motion as described in (Friston, 2010). In this hierarchical form f(i) := f(xx(i),xv(i)) corresponds to the equations of motion at the i-th level, while
g(i) :=g(xx(i),xv(i)) link levels. These equations constitute the agent's prior beliefs. D is a derivative operator and Π(i) represents precision or inverse variance. These equations were
used in the simulations presented in the next figure.
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Three Case Studies 

1.! Development of self-other cognition 
and imitation based on         
predictive learning 
[Nagai, Kawai, & Asada, ICDL-EpiRob 2011] 

2.! Emergence of prosocial behaviors 
through minimization of            
prediction error 
Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 

3.! Autism spectrum disorder induced by 
atypical tolerance for prediction error 
Qin, Nagai, Kumagaya, Ayaya, & Asada, ICDL-EpiRob 2014] 



Young Infants Cannot Recognize  
Self in Mirror 

(Adapted from “The Baby Human 2” Discovery Channel)  



Self-Other Cognition Based on 
Predictive Learning 

•! Spatiotemporal predictability of sensorimotor 
information discriminates the self from others. 
–! Self = higher predictability, others = lower predictability  
–! Perceptual and motor development leads to the emergence of 

mirror neuron systems. 
(3) Matured perception  

 ! self-other correspondence 

(2) 
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Others 
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[Nagai et al., ICDL-EpiRob 2011; Kawai et al., IROS 2012] 

(1) Immature perception & action  
 ! self-other assimilation 



No differentiation 
between Self and Others 

No differentiation 
between 

Computational Model for Self-Other Cognition 
 Early Stage of Development  

Self and Others
No differentiation 

between Self and Others 

Motor output 

Visual input 

[Nagai et al., ICDL-EpiRob 2011; Kawai et al., IROS 2012] 



Computational Model for Self-Other Cognition 
 Later Stage of Development  

MNS = 

Self ’s 
motion 

Others’  
motion 

Motor output 

Visual input 

[Nagai et al., ICDL-EpiRob 2011; Kawai et al., IROS 2012] 



Result 1: Self-Other Differentiation and MNS 
•! Self-other differentiation 

in visual space 
•! MNS acquired in 

sensorimotor mapping 

[Nagai et al., ICDL-EpiRob 2011; Kawai et al., IROS 2012] 
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Result 2: Imitation Using Acquired MNS 
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Three Case Studies 

1.! Development of self-other cognition 
and imitation based on         
predictive learning 
[Nagai, Kawai, & Asada, ICDL-EpiRob 2011] 

2.! Emergence of prosocial behaviors 
through minimization of            
prediction error 
Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 

3.! Autism spectrum disorder induced by 
atypical tolerance for prediction error 
Qin, Nagai, Kumagaya, Ayaya, & Asada, ICDL-EpiRob 2014] 



Infants Help Others Even Without Reward 

[Warneken & Tomasello, 2006] 



Two Theories for Prosocial Behaviors 
[Paulus, 2014] 

•! Emotion-sharing theory 
–! Understand other person as an 

intentional agent [Batson, 1991] 

–! Be motivated to help other based on 
empathic concern for other’s needs  
[Davidov et al., 2013] 

–! Self-other differentiation 

•! Goal-alignment theory 
–! Understand other’s goal, but not his/her 

intention [Barresi & Moore, 1996] 

–! Take over other’s goal as if it were 
infant’s own 

–! No self-other discrimination 
[Warneken & Tomasello, 2006] 



Predictor:  
probabilistic  
state action tree  

Prosocial Behavior Based on  
Minimization of Prediction Error 

Cover 

Push Push 

[Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 
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1.! Update the predictor by 
minimizing a prediction error 
ei(t+1) through the robot’s 
own experiences 



Prosocial Behavior Based on  
Minimization of Prediction Error 

Predict 

(other’s action) 
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[Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 

1.! Update the predictor by 
minimizing a prediction error 
ei(t+1) through the robot’s 
own experiences 

2.! Estimate ei(t+1) while 
observing others’ action si(t) 
–! No perspective difference 

between the self and others 



Push Push 

Prosocial Behavior Based on  
Minimization of Prediction Error 

1.! Update the predictor by 
minimizing a prediction error 
ei(t+1) through the robot’s 
own experiences 

2.! Estimate ei(t+1) while 
observing others’ action si(t) 
–! No perspective difference 

between the self and others 

3.! Execute an action âj(t+1) to 
minimize ei(t+1) if             
ei(t+1) > threshold 

!!Help others 
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[Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 



Result: Emergence of Prosocial Behavior 

[Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 



Three Case Studies 

1.! Development of self-other cognition 
and imitation based on         
predictive learning 
[Nagai, Kawai, & Asada, ICDL-EpiRob 2011] 

2.! Emergence of prosocial behaviors 
through minimization of            
prediction error 
Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 

3.! Autism spectrum disorder induced by 
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Autism Spectrum Disorder (ASD) 

•! Difficulties in social interaction 
[Baron-Cohen, 1995; Charman et al., 1997;  
Mundy et al., 1986] 

–! Less eye contact 
–! Difficulties in reading emotion 
–! Lack of theory of mind, etc. 

•! Atypical perception and  
atypical information processing          
[O’Neill & Jones,1997; Happé & Frith, 2006;           
Ayaya & Kumagaya, 2008] 

–! Hyperesthesia/hypoesthesia 
–! Local processing bias, etc. 

Perception 

Social 



Atypical Perception in ASD 
[Qin et al., ICDL-EpiRob 2014; Nagai et al., in prep.] 



Our Hypothesis about Mechanism of ASD  
[Nagai & Asada, 2015] 

•! Atypical tolerances for prediction errors may produce 
different internal models of ASD from TD’s models.  

Sensorimotor signals 

Typically developing people 
Proper tolerance for      
prediction error 

People with ASD 
Atypical tolerance for 

prediction error 

(smaller tolerance ! hyperesthesia) 

(larger tolerance ! hypoesthesia) 
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Our Theory [Nagai & Asada, 2015] 

Predictive learning of sensorimotor information (i.e.,  
minimizing prediction error ei(t+1)) leads to cognitive development. 

(1) Update the predictor through 
sensorimotor experiences 
 ! Self-other cognition 
 ! Goal-directed action, etc. 

(2) Execute a predicted action in 
response to others’ action 
 ! Imitation 
 ! Prosocial behavior, etc. 
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Three Case Studies 

1.! Development of self-other cognition 
imitation based on predictive learning 
[Nagai, Kawai, & Asada, ICDL-EpiRob 2011] 

2.! Emergence of prosocial behaviors 
through minimization of            
prediction error 
Baraglia, Nagai, & Asada, ICDL-EpiRob 2014] 

3.! Autism spectrum disorder induced by 
atypical tolerance for prediction error 
Qin, Nagai, Kumagaya, Ayaya, & Asada, ICDL-EpiRob 2014] 
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