

Visual learning of objects and tools on the iCub robot

Lorenzo Natale

iCub Facility Istituto Italiano di Tecnologia, Genova, Italy

Workshop on Towards Intelligent Social Robots – Current Advances in Cognitive Robotics November 3rd, 2015, Seoul, South Korea

Italy

Genova

Italy

Genova

Italian Institute of Technology

Italy

Autonomous

Autonomous Friendly (humans)

Autonomous Friendly (humans) Perception & control

Autonomous Friendly (humans) Perception & control Size/Weight/Power

Autonomous Friendly (humans) Perception & control Size/Weight/Power Safety

Autonomous Friendly (humans) Perception & control Size/Weight/Power Safety

- Engineering
- Research/science

- Engineering
- Research/science

interaction

- Engineering
- Research/science

interaction

objects

- Engineering
- Research/science

interaction

objects

tools

- Engineering
- Research/science

interaction

system integration

objects

tools

- Engineering
- Research/science

interaction

system integration

objects

tools

- Engineering
- Research/science

Learning

- Autonomous
- Continuous, online, incremental
- Multimodal, exploit interation with the environment

Tools

Exploring Affordances

- Self-supervised learning of pulling actions
- Exploring tool size
- Exploring tool affordances

Exploring tool size

Exploring tool size

Exploring Affordances

- Learn effect of pulling actions
- Depends on tool and tool pose

Left

Right

Localization

Computing effect

Characterizing the tool

Left

Right

Processing Stages

Details: considered features

Based on convex hull

- Depth of the 5 larger convexity defects
- Histogram of bisector angles at convexity defects
- Area of the convex hull
- Solidity

Based on thinning

- Number of skeleton bifurcations to the left, right, under and above
- Number of skeleton endings to the left, right, under and above the blob's center of mass

Based on moments

Normalized central moments

• Shape descriptors

- Area, perimeter, compactness
- Major principal axis (length), Minor principal axis (width)
- Aspect ratio, Extension, Elongation, Rectangularity

• From the angle signature

- Bending energy (sum of squares of the angle variation along the contour, divided by the number of points in their contour)
- Angle signature histogram

Signature of distance contour to centroid

- Fourier coefficients
- Wavelet coefficient

Characterizing Effect

• How close is the object to the robot after the action, given tool position w.r.t object →affordance vector

For each orientation & position...

Putting it all together

Details of the experiments

- Each trial consists of:
 - 11 pull actions (various approaches from -5 to 5 cm to either side of the object)
 - The 11 pairs action-effect represent an affordance vector which describe how well a particular tool-pose affords pulling as a function of the approach position w.r.t the object
 - Between 20 and 25 of such affordance vectors have been recorded in simulation
 - And 10 vectors for each of the tool-poses on the real robot

total of 567 vectors (6237 pulls) on simulation and 138 vectors (1518 pulls) on the real robot

Results

Test	Env.	Class. Acc. (%)	rMSE [m]	Environment	Goal Acc. (%)	Avg. Diff [m]
Prediction	Sim.	81.9 %	0.064	Simulation	86.51 %	0.064
Prediction	Robot	64.1 %	0.051	Robot	86.11 %	0.056

Video: exploration

Mar et al. IROS 2015, Humanoids 2015

Video: prediction

Mar et al. IROS 2015, Humanoids 2015

Objects

Vision in robotics

Autonomous learning

DEEP NETWORKS (GPU)

Credits: Fei-Fei Li

Computer Vision

Approaching human performance on the same dataset!

Russakovsky et al. 2015

Supervision is expensive and inaccurate

- Supervision is expensive and inaccurate
- Need for online learning

- Supervision is expensive and inaccurate
- Need for online learning
- Objects: large variability (scale, viewpoint)

- Supervision is expensive and inaccurate
- Need for online learning
- Objects: large variability (scale, viewpoint)
- Background: little variability

- Supervision is expensive and inaccurate
- Need for online learning
- Objects: large variability (scale, viewpoint)
- Background: little variability
- Limited resolution

Methods

An initial evaluation

Some questions

- To what extend does clutter affect performance?
- Scalability. How do iCub recognition capability decrease as we add more objects to distinguish?
- Can we use assumptions on physical continuity to make recognition more stable?
- Incremental Learning. How does learning during multiple sessions affect the system recognition skills?
- Generalization. How well does the system recognize objects "seen" under different settings?

On the fly recognition

Verbal instructions of a "teacher"

Robot's attention (motion/disparity)

Benchmarking the iCub visual system iCubWorld Dataset

Enabling Depth-driven Visual Attention on the iCub robot: Instructions for Use and New Perspectives (online: arxiv)

We start by focusing on instance recognition

Instance Recognition

Interactive Object Learning

Verbal instructions of a "teacher"

Robot's attention (motion, colorbased segmentation, disparity)

Benchmarking the iCub visual system

- Growing dataset collecting images from a real robotic setting
- Provide the community with a tool for benchmarking visual recognition systems in robotics
- 28 Objects, 7 categories, 4 sessions of acquisition (four different days)
- 11Hz acquisition frequency
- ~50K Images

http://www.iit.it/en/projects/data-sets.html

iCubWorld28 Dataset Examples of Acquired Videos

Benchmarking deep Conv Nets for Real-world Object Recognition: How many Objects can iCub Learn? <u>arXiv: 1504.03154</u>, <u>http://www.iit.it/it/projects/data-sets.html</u>

Recognition datasheet

Exploiting time continuity

More objects, more variability

- 20 categories x 10 samples: 200 objects
- 5 different days, 600K images
- 12 hours of acquisition
- Soon to be released: http://www.iit.it/en/projects/data-sets.html
- Continuously expanding dataset, will involve other labs: public code for data acquisition & automatic processing

Future directions, touch

Paikan et al. IROS 2014, JOSER 2015

Wrap up

• Tool use:

- A framework for self-supervised learning of pulling affordances, linking effect of actions with visual appearance of the tool
- Improve actions and generalize to different actions
- 3D features (see Tanis Mar presentation here at Humanoids 2015)
- Object learning:
 - Hierarchical methods with pre-learned representation
 - Methodology for acquiring large data set, iCubWorld
 - State-of-the-art much better, but still need improvement
 - Time/spatial continuity?
 - Incremental learning?

Acknowledgements

What You Say Is What You Did

Giulia Pasquale Tanis Mar Ali Paikan Massimo Regoli Nawid Jamali Carlo Ciliberto

Vadim Tikhanoff Ugo Pattacini Lorenzo Rosasco Giorgio Metta